

SIDDARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Signals, Systems and Random Processes (20EC0404) Course & Branch: B.Tech - ECE

Year & Sem: II-B.Tech & I-Sem Regulation: R20

<u>UNIT –I</u>

INTRODUCTION TO SIGNALS AND SYSTEMS

1.	a)	Define signal. Explain various elementary signals and indicate them	[L2] [CO1]	[6M]
		graphically.	2 32 3	
	b)	Sketch the following signals.	[L3] [CO2]	[6M]
		(i) $x(t)=2 u(t+2)-2 u(t-3)$ (ii) $x(t)=r(t)-r(t-1)-r(t-3)+r(t-4)$		
2.		Explain the classification of signals with respect to continuous time and	[L2] [CO1]	[12M]
		discrete time with suitable examples.		
3.	a)	Define and Explain the Following with an example.	[L2] [CO1]	[8M]
		(i) Deterministic and Non-Deterministic Signal.		
		(ii) Energy and Power Signal.		
		(iii) Causal and Non-Causal Signal.		
		(iv) Periodic and Aperiodic Signal		
	b)	Find which of the signals are causal or non-causal.	[L3] [CO2]	[4M]
		(i) $x(t) = e^{2t} u(t-1)$ (ii) $x(n) = u(n+4) - u(n-2)$	FT 01 F 00 15	50.5
4.	a)	Define the Energy and Power of continues and discrete time signals with	[L3] [CO1]	[6M]
	1 \	necessary equations.	ET 01 EC 02	[(A) [C]
	b)	Identify whether the following signals are energy signals or power signals.	[L3] [CO2]	[6M]
_		(i) $x(t)=8 \cos 4t \cos 6t$ (ii) $x(t)=e^{i[3t+(\pi/2)]}$ (iii) $x(n)=(1/2)^n u(n)$	H 31 (CO31	[10]
5.		Find whether the following signals are periodic or not? If periodic determine	[L3] [CO2]	[12M]
		the fundamental Period. (i) $\sin 12\pi t$ (ii) $\sin (10t+1)-2\cos (5t-2)$ (iii) $e^{j4\pi t}$		
			[] 2] [CO1]	[12]
6. 7.		What are the basic operations on signals? Explain with an example.	[L2] [CO1]	[12M]
/•		Define a System. Explain the classification of Systems with an example for each.	[L2] [CO1]	[12M]
8.	a)	Define the following Systems	[L1] [CO2]	[8M]
0.	<i>a)</i>	(i) Linear and Non- Linear		[OIVI]
		(ii) Time invariant and time variant.		
		(iii) Static and dynamic		
		(iv) Causal and Non-causal		
	b)	Find whether the following system is	[L3] [CO2]	[4M]
	_	(i) Linear or Non-Linear		
		(ii) Static and dynamic.		
		$d^3y(t)/dt^3+2d^2y(t)/dt^2+4dy(t)/dt+3y^2(t)=x(t+1)$		
9.		Interpret whether the following systems are Linear or Non- Linear, Time	[L3] [CO2]	[12M]
		Invariant or Time Variant and Causal or Non-causal.		
		(i) $y(n) = \log_{10} x(n) $		
		(ii) $y(t)=at^2 x(t)+bt x(t-4)$		
10.	a)	Define Stable and Unstable systems with an example.	[L2] [CO2]	[6M]
	b)	Determine whether the following systems are stable or not.	[L3] [CO2]	[6M]
		(i) $y(t) = (t+5) u(t)$		
		(ii) $h(n)=a^n \text{ for } 0 < n < 11$		

<u>UNIT –II</u> FOURIER SERIES AND FOURIER TRANSFORM

1.	a)	Explain about representation of Fourier series and discuss the Dirichlet's Conditions.	[L2] [CO3]	[4M]
	b)	State and Prove the Linearity, Time Shifting, Time Reversal and Time Convolution Properties of Fourier series.	[L3] [CO3]	[8M]
2.	a)	Explain about representation of a signal in Trigonometric Fourier series.	[L2] [CO3]	[2M]
	b)	Derive the Trigonometric Fourier series coefficients.	[L3] [CO3]	[10M]
3.	a)	Explain about representation of a signal in exponential Fourier series.	[L2] [CO3]	[3M]
	b)	Derive the Exponential Fourier series coefficient.	[L3] [CO3]	[9M]
4.	/	Construct the Trigonometric Fourier series expansion of the half wave	[L3] [CO3]	[12M]
		rectified sine wave shown in figure.		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5.		Develop the Exponential Fourier Series for the given signal below	[L3] [CO3]	[12M]
		x(t)		
6.	a)	Demonstrate how Fourier Transform derived from Fourier series.	[L2] [CO3]	[8M]
	b)	Define Fourier transform, magnitude and phase response.	[L1] [CO5]	[4M]
7.	a)	State and prove any four properties of Continuous time Fourier transform.	[L3] [CO3]	[6M]
	b)	Find the Fourier transform, magnitude and phase response of the given signal. $x(t) = e^{-t} \cos 5t u(t)$	[L3] [CO5]	[6M]
8.		Find the Fourier transform of the following.	[L3] [CO3]	[12M]
		(i) $x(t)=\delta(t)$ (ii) $x(t)=u(t)$ (iii) $x(t)=sgn(t)$ (iv) $sin\omega_0 t$		[
		(v) $\cos \omega_0 t$ (vi) $x(t) = e^{-at} u(t)$		
9.		Find the inverse Fourier transform of the following signals.	[L3] [CO5]	[12M]
		(i) $X(\boldsymbol{\omega}) = \frac{4(j\boldsymbol{\omega}) + 6}{(j+2)^2 + 6(j+2) + 2}$	-	
		(i) $X(\boldsymbol{\omega}) = \frac{4(j\boldsymbol{\omega})+6}{(j\boldsymbol{\omega})^2+6(j\boldsymbol{\omega})+8}$ (ii) $X(\boldsymbol{\omega}) = \frac{1+3(j\boldsymbol{\omega})}{(j\boldsymbol{\omega}+3)^2}$		
10.	a)	Explain about Fourier Transform of Periodic Signals.	[L2] [CO3]	[6M]
	b)	Find the Fourier Transform of the following signals using Properties.	[L3] [CO5]	[6M]
		$(i) \qquad e^{-at} u(t)$		
		(ii) $\delta(t+2) + \delta(t+1) + \delta(t-1) + \delta(t-2)$		

Course Code: 20EC0404

R20

<u>UNIT –III</u> SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

1.	a)	Describe the following responses of Systems.	[L2] [CO5]	[6M]
		(i) Impulse Response.	[22] [888]	[01/2]
		(ii) Step Response.		
		(iii) Response of the System.		
	b)	Define linear time variant and linear time-invariant system with necessary	[L1] [CO4]	[6M]
		equations.	2 32 3	
2.		Discuss the properties of linear time invariant system.	[L2] [CO2]	[12M]
3.		Consider a causal LTI system with frequency response H(ω)=1/4+jω, for a	[L3] [CO5]	[12M]
		input x(t), the system is observed to produce the output y(t)= $e^{-2t}u(t)-e^{-4t}u(t)$.		
		Find the input x(t).		
4.		Consider a stable LTI system that is characterized by the differential	[L3] [CO5]	[12M]
		equation $d^2y(t)/dt^2+4dy(t)/dt+3y(t)=dx(t)/dt+2x(t) \text{ find the response}$		
		for an input $x(t)=e^{-t} u(t)$.		
5.	a)	Derive the Transfer function of LTI system.	[L3] [CO1]	[6M]
	b)	Explain the Filter characteristics of linear systems with neat diagrams.	[L2] [CO5]	[6M]
6.	a)	The impulse response of a continuous-time system is expressed as	[L3] [CO4]	[6M]
		$h(t)=e^{-2t} u(t)$. Find the Frequency response of the system.		
	b)	State and Prove the Following Properties of LTI System.	[L3] [CO2]	[6M]
		(i) Distributive Property		
		(ii) Associative Property		
7.	a)	Define Convolution. State and prove the time convolution theorem with	[L3] [CO4]	[6M]
		Fourier transforms.		5 (3.53
	b)	State and prove the frequency convolution theorem with Fourier transforms.	[L3] [CO4]	[6M]
8.	<u>a)</u>	Demonstrate the Procedure to perform convolution graphically.	[L2] [CO2]	[6M]
	b)	Examine the convolution of the following signals by graphical method.	[L3] [CO2]	[6M]
	\	$x(t)=e^{-3t} u(t) \text{ and } h(t)=u(t+3)$	FI 01 FC 043	[(A) [7]
9.	a)	Define Auto correlation of signals. Explain any two properties of Auto	[L2] [CO4]	[6M]
	1.	correlation function.	II 01 ICO 43	[() 47]
	b)	Define Cross correlation of signals. Explain any two properties of Cross	[L2] [CO4]	[6M]
10	2)	correlation function.	[I 2] [CO4]	[CM]
10.	a)	State and prove any three properties of convolution.	[L3] [CO4]	[6M]
	b)	Find the convolution of the following signal $x_1(t) = e^{-2t} u(t)$,	[L3] [CO4]	[6M]
		$\mathbf{x}_2(\mathbf{t}) = e^{-4t} \mathbf{u}(t).$		

<u>UNIT -IV</u> <u>LAPLACE TRANSFORMS AND INTRODUCTION TO PROBABILITY</u>

				1
1.	a)	Define Laplace Transformation. Determine the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and also find its ROC.	[L3] [CO5]	[6M]
	b)	Find the Laplace transforms and ROC for the following signals.	[L3] [CO5]	[6M]
	,	(i) $x(t)=e^{-5t}u(t-1)$	[][]	[***-]
		(ii) $x(t)=e^{-a t }$		
2.		Illustrate the inverse Laplace transform of the following.	[L3] [CO5]	[12M]
		(i) $X(s) = 1/s(s+1)(s+2)(s+3)$		
		(ii) $X(s)=s/(s+3)(s^2+6s+5)$		
3.	a)	Describe the Laplace domain analysis.	[L2] [CO5]	[6M]
	b)	State and prove any three Properties of Laplace Transform.	[L3] [CO2]	[6M]
4.	a)	Discuss about the Linearity, Time Shifting and Time Reversal Properties of	[L2] [CO2]	[6M]
	,	Laplace transform.		
	b)	Explain the Laplace transform for any three standard signals.	[L2] [CO3]	[6M]
5.	a)	Determine the Laplace transform of the following signals using properties	[L3] [CO5]	[8M]
		(i) $x(t)=t e^{-t} u(t)$		
		(ii) $x(t)=t e^{-2t} \sin 2t u(t)$		
	b)	Derive the relation between Laplace Transform and Fourier Transform of a	[L3] [CO3]	[4M]
		signal.		
6.	a)	Define Probability.	[L1] [CO6]	[2M]
	b)	Define the following with examples.	[L1] [CO6]	[10M]
		(i) Sample space		
		(ii) Event		
		(iii) Mutually exclusive events.		
		(iv) Independent events		
7.		Discuss about Joint and Conditional probability and also state the properties	[L2] [CO6]	[12M]
		of Joint & Conditional Probability.		
8.	a)	Define Random variable and explain briefly.	[L2] [CO6]	[6M]
	b)	Define probability distribution and density functions. Explain any two	[L2] [CO6]	[6M]
		properties for each one.		
9.	a)	Examine the distribution function $F_{xx}(x,y)$	[L3] [CO6]	[6M]
		(X,Y) $(0,0)$ $(1,2)$ $(2,3)$ $(3,2)$		
		P(x,y) 0.2 0.3 0.4 0.1		
	b)	A random variable X has a probability density function	[L3] [CO6]	[6M]
		$f_{x}(x) = C(1-x^{4}) \qquad -1 < x < 1$ Otherwise		
		0 0 1101 (1100		
10		Determine the constant 'C'.	ET 01 FC0 C	[103.5]
10.		Let X is a continuous random variable with density function	[L3] [CO6]	[12M]
		$f_X(x) = \begin{cases} x/9 + k & 0 < x < 6 \\ 0 & \text{Otherwise} \end{cases}$		
		Otherwise		
		(i) Find 'k'		
		(ii) Find $p[2 < x < 5]$		

<u>UNIT -V</u> RANDOM PROCESSES

1.	a)	Explain the concept of Random process.	[L2] [CO6]	[6M]
	b)	Classify the Random Processes and explain briefly.	[L2] [CO6]	[6M]
2.	a)	Differentiate the Distribution and Density functions of a Random Process.	[L2] [CO6]	[6M]
	b)	Prove that the Power Spectral Density of the derivative $X(t)$ is equal to ω^2	[L5] [CO6]	[6M]
		times the Power Spectral Density of $Sxx(\omega)$.		
3.	a)	Define and explain Stationary and Statistical Independence of Random	[L2] [CO6]	[6M]
		process.		
	b)	Show that the autocorrelation function of a stationary random process is an	[L2] [CO6]	[6M]
		even function of τ.		
4.	a)	Describe the first order, second order, wide-sense and strict sense stationary	[L2] [CO6]	[6M]
		process.		
	b)	Illustrate about Time averages of Random process.	[L3] [CO6]	[6M]
5.		Define Auto Correlation Function. State and prove any four properties of	[L3] [CO6]	[12M]
		Auto Correlation Function.		
6.		Prove the followings.	[L3] [CO6]	[12M]
		$(i) R_{xx}(\tau) \le R_{xx}(0)$		
		(ii) $R_{xx}(-\tau) = R_{xx}(\tau)$		
		(iii) $R_{xx}(0) = E[X^2(t)]$		
7.		What is cross correlation function of a random process? State and prove any	[L3] [CO6]	[12M]
		four properties of cross correlation function of a random process.		
8.	a)	Describe the concept of power spectral density.	[L2] [CO6]	[6M]
	b)	State and prove any two properties of power spectral density.	[L3] [CO6]	[6M]
9.	a)	Explain the concept of cross power density spectrum.	[L2] [CO6]	[6M]
	b)	State and Prove any two properties of cross power density spectrum.	[L2] [CO6]	[6M]
10.	a)	If the Power Spectral Density of $x(t)$ is $Sxx(\omega)$ then find the Power Spectral	[L3] [CO6]	[6M]
		Density of dx(t)/dt.		
	b)	The power spectral density of a stationary random process is given by	[L3] [CO6]	[6M]
		$Sxx(\omega) = A$; $-k < \omega < k$		
		C 0 , Otherwise		
		Find the auto correlation function.		

Prepared by:

- 1. K D Mohana Sundaram Assistant Professor Dept. of ECE
 - SIETK, Puttur.
- 2. S V Rajesh Kumar Assistant Professor Dept. of ECE SIETK, Puttur.
- 3. G Raghul Assistant Professor Dept. of ECE SIETK, Puttur.